# Distribution System Efficiency: Conservation Voltage Reduction (CVR)

## Big Question: Is Conservation Voltage Reduction a viable and economical energy efficiency technique?

What is energy efficiency? Using less energy to provide the same service.



### **Conservation Voltage Reduction:**

CVR is a proven method to reduce energy and peak demand. It controls the voltage on a

distribution circuit to stay within the lower 5% of the ANSI standard voltage range (+/- 5% of nominal voltage) for that circuit.

## **Benefits of CVR:**

- Improves the efficiency of many end-use appliances
- Power quality improvements and line loss mitigation
- Customer AND distributor see energy savings
- Cost effective, scalable, and controllable.
- Voltage regulation on high penetration DG circuits
- Reduces overall energy consumption

FACT: According to the DOE, 90% of homes and businesses receive more voltage than they need.

Where do I start and how does it work?

## Where should I start? Am I a good candidate for CVR?

- Short lines
- Moderate load on feeders
- A highly resistive load (mainly residential customers)
- High percentage of meter penetration

### **Test cases from EPRI's Green Circuit Study**



### **ANSI C 84.1 Voltage Range**

| Nominal Service<br>Voltage | Desirable Range<br>(Range A) | Acceptable Range<br>(Range B) |
|----------------------------|------------------------------|-------------------------------|
| 120                        | 126-114                      | 127-110                       |
| 208                        | 218-197                      | 220-191                       |
| 240                        | 252-228                      | 254-220                       |
| 277                        | 291-263                      | 293-254                       |
| 480                        | 504-456                      | 508-440                       |

**Results from test analysis:** 

- Substation voltage reduction of 2-4%
- produces a 1.6-2.7% savings in load.
- A 1% change in voltage generally decreased load by 0.6-0.8%.
- Voltage reduction is most effective in the summer and least effective in the winter (when thermostatically controlled heating load (constant energy) is present).

**Voltage Reduction Effects on Power Consumption** 



Voltage reduction, percent

## City of Palo Alto (CPAU) DEED Project – Evaluation of Conservation Voltage Reduction

## **Preliminary Analysis:**

### **Characteristics of City of Palo** Alto:

- Serves 29,000 customers, 185 MW of peak demand across 25 square mile territory
- Relatively dense service area
- Majority of the main line feeders range around 1.3 miles
- One load tap changer on each transformer bank
- About 80% of load is light/medium commercial

## **Results from Analysis:**

**Approximation of CVR factor for real power demand** Strong positive correlation between dV and dMW becomes more clear



## Day-in/Day-out testing outcomes:

- Substation voltage reduction of 1% produced approximately 0.5-1.0% savings in load.
- Reactive power was fairly stable throughout tests
- The results in real and reactive power from the experiment closely matched the results of the studies done by EPRI and others – this provided higher confidence in that CPAU's load characteristics will enable similar savings with CVR.

## Takeaway from the study:

- The absence of end-of-line meter data for residential customers and of time series meter level load data made it difficult to generate a perfectly accurate representation of load allocation across each feeder.
- It was not possible to test for all load variations during the test sequence.





