Remain the Trusted Energy Partner?

Utility Energy Conference

May 5, 2016

Conrad Eustis conrad.eustis@pgn.com

© 2016 Portland General Electric. All rights reserved.

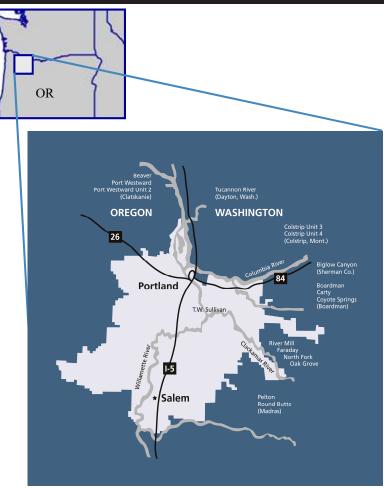
Portland General Electric

852,000 customers, 52 cities served

Service territory population 1.8 million, 43% of state's population

4,000-square-mile service area

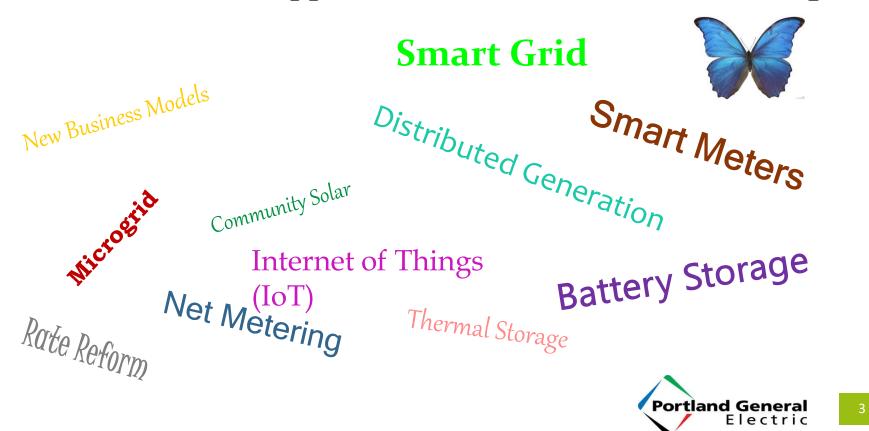
2,600 employees

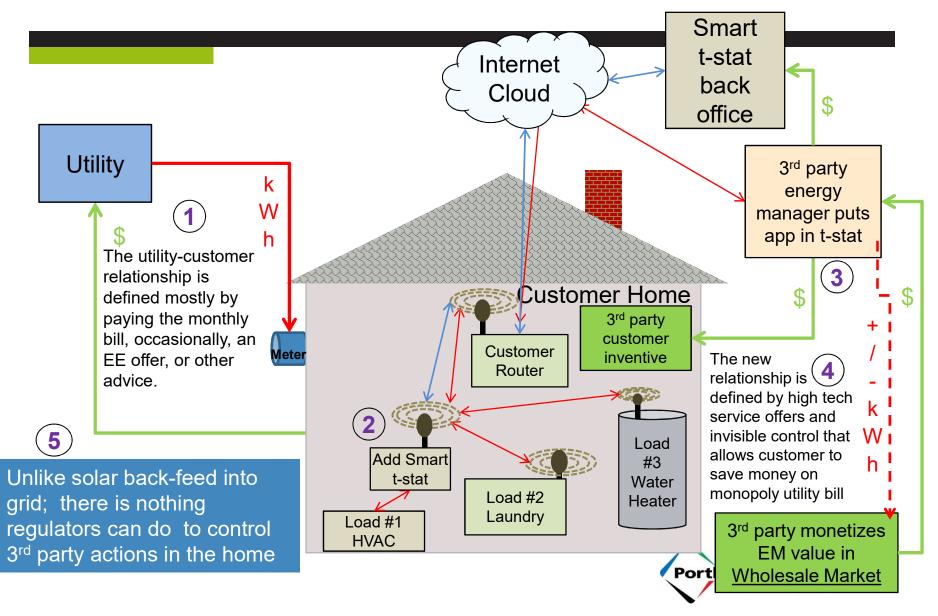

Summer peak load of 3,950 MW (2009)

Winter peak load of 4,073 MW (1998)

Number #1 in US by NREL in Renewable energy sales and customers

First multi-MW Li-Ion battery-inverter system placed in operation by a utility


21% of owned generation nameplate capacity is wind generation; 36% is renewable.



Industry under Metamorphosis

If the 20th century Grid was a caterpillar, the Grid will re-appear in 2050 as a butterfly.

"Trust" in the Internet of Thing (IoT) World

IoT: Be Afraid, or at least, Be Wary

- Cisco Internet of Everything (IoE) Value = \$19 Trillion
- Good News:
 - First Effort: Add connected features to product line
 - Second Effort: Connect with others
 - Present feature set: energy is only a simple control option
 - Monetizing energy-management value not in the high tech skill set, YET
- Bad News:
 - Connecting devices to meet customer expectations is difficult, expensive, and requires IT culture not found in utilities
 - We are big in aggregate, but act individually
 - And WORSE ==>

Annual	Market
Revenue	Capitalization
\$1,000	\$400
\$400	\$900
\$350	\$500
\$600	\$415
\$215	\$490
\$170	\$480
\$350	\$200
\$50	\$380
\$110	\$240
\$115	\$140
\$61	\$180
	Annual Revenue \$1,000 \$400 \$350 \$600 \$215 \$170 \$350 \$50 \$110 \$115

Connected "Players" Jan 2014 ---- in Billions ----

The Driver for Industry Change

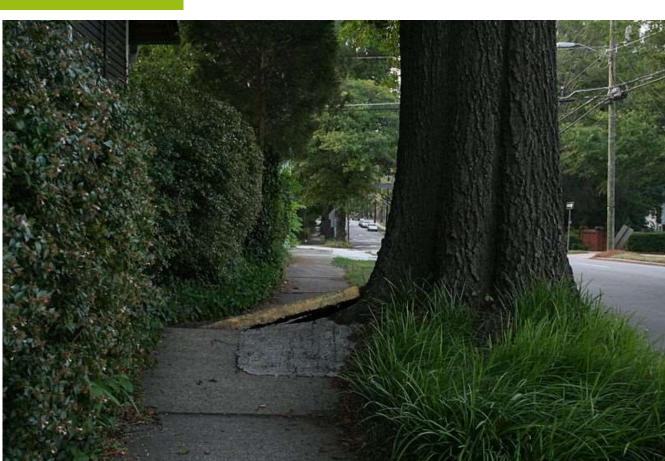
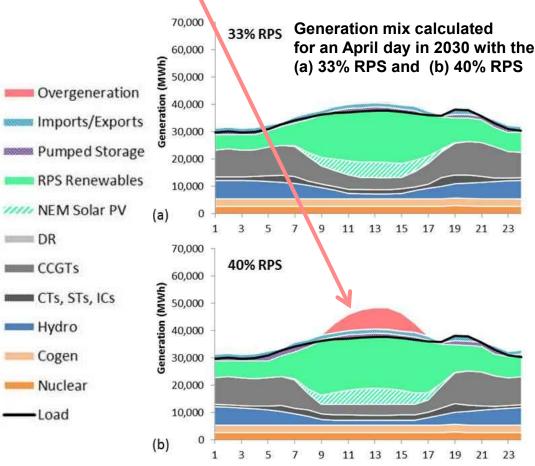



Photo Credit: Ildar Sagdejev http://commons.wikimedia.org/wiki/File:200 8-06-28 Broken_sidewalk.jpg

The Problem: High RPS - Overgeneration

- Solar generation with a capacity factor of 17% that peaks mid day
 Note: PV Solar is only 46% of the renewable energy in the figure (b)
- Wind 35% capacity factor but peaks at night
- Even when wind blows and suns shines, output variation significant compared to today's load/gen imbalance

Reference: *Investigating a Higher Renewables Portfolio Standard in California*, Energy and Environmental Economics, Inc., 101 Montgomery Street San Francisco, CA 94104. Jan 2014

The Five Solutions (To get to 100% renewables)

In order of cost effectiveness (low to high, and available sooner)

- 1. When possible, shift electric use to periods of renewable generation production
- 2. Heat Pumps draw on thermal storage for space conditioning & water heating
- 3. Electric storage (esp. stationary at each customer premises)

But are the next two solutions less expensive?

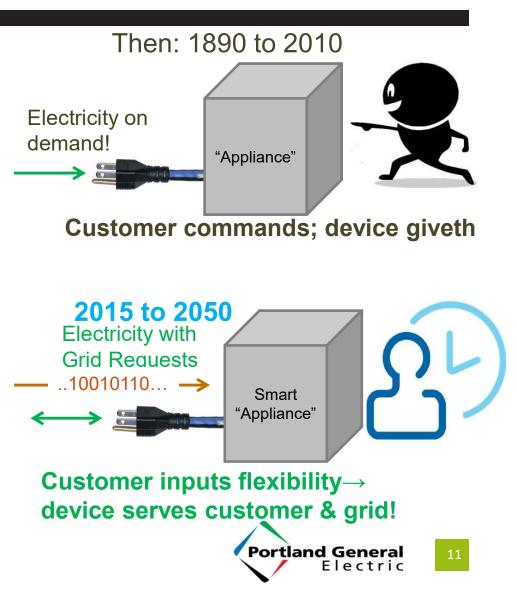
- 4. Modify industrial manufacturing process to add capacity that runs coincident with periods of excess renewable production
- 5. Synthetic oil and methane production from waste cellulose and renewable electricity or bio-engineered "bugs"

© Portland General Electric 2016

PGE is Working the Steps

Implementing Solution #1

When possible, shift electric use to periods of renewable generation production



New General Concept

For first 120 years

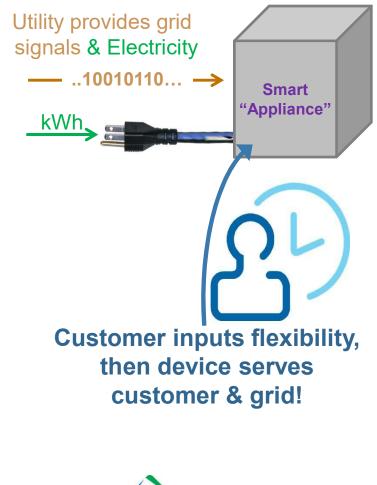
- Energy flows one way to customer
- Customer loads and generation serve best interests of customer
- By 2010, Idea: many loads can respond to price and control signals to help integrate renewable generation.
- No word describes concept

Word for an Emerging Concept

 In 2050 need most loads and distributed generation to be alonetic

<u>Opposite</u> of alonetic is
 egonetic which is the behavior of today's devices

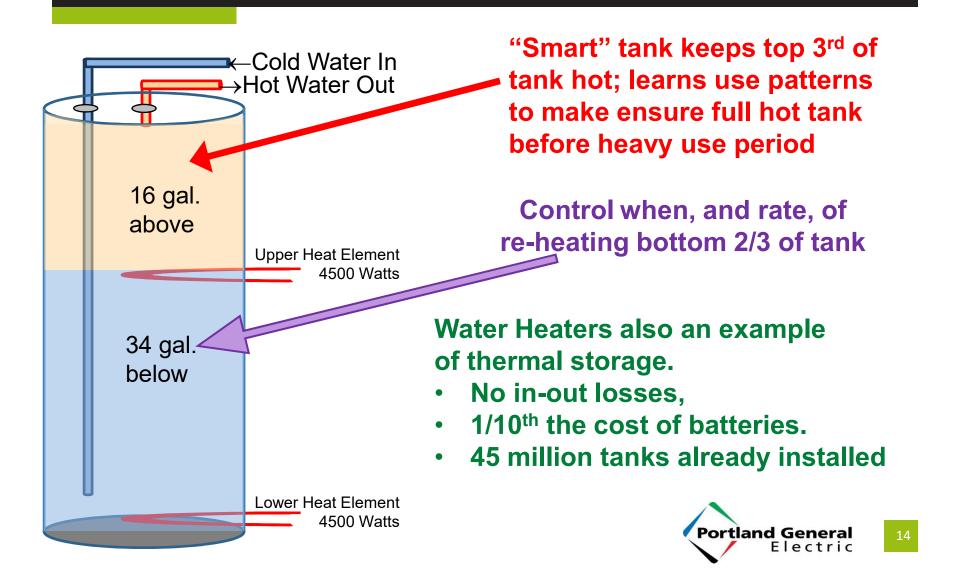
Alonetic, adjective ăl • ō • nĕt' • ĭk


- alo- from Latin "to support"
- "net" as in the "electric grid network";
- -ic of, or pertaining to

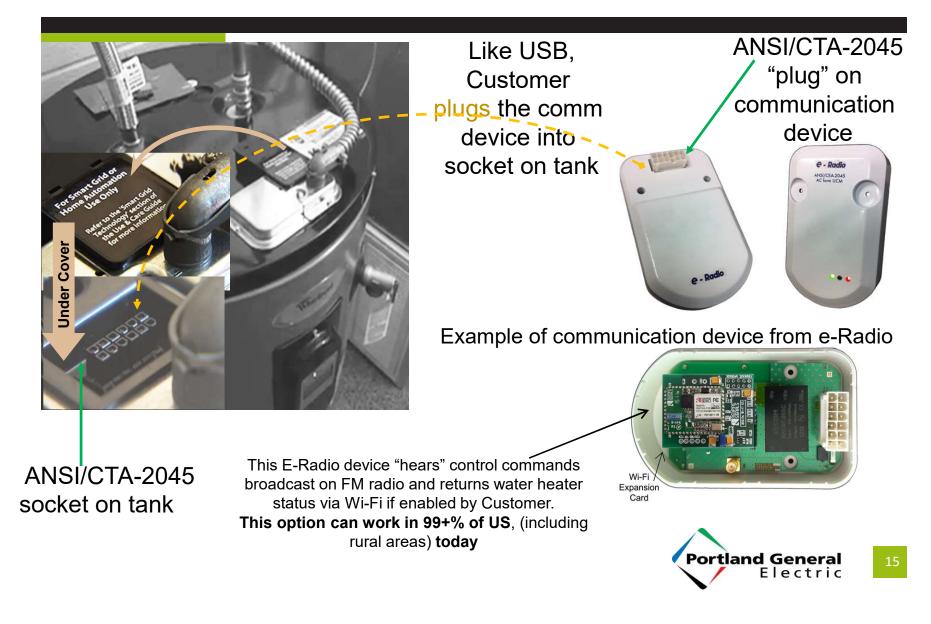
Definition: The ability of an electric device to beneficially support operation of the electric grid

Why Alonetic Devices Create Win-Win

- In a nutshell: Customers benefit because they don't pay full cost of the new technology
- Utility provides "rebates" in return for control permitted by the customer
- Secret sauce in each smart device
 - Manufacturer provides simple way for customer to define flexibility
 - Device receives utility signals via standard communication , i.e. CTA-2045
 - Control logic in device maximizes grid benefit, but <u>ensures_customer needs met</u>



Portland General


Electric

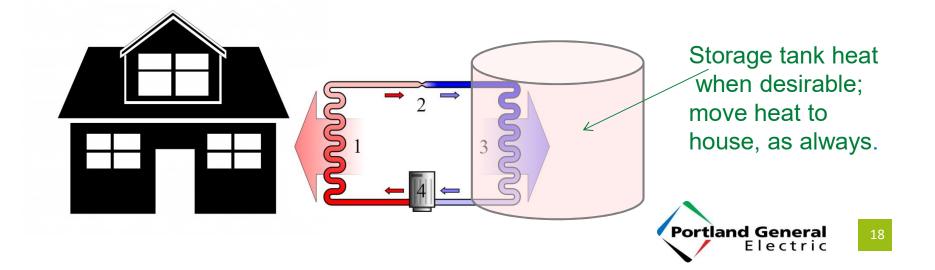
© PGE 2015

Alonetic Water Heaters Part of the New Solution

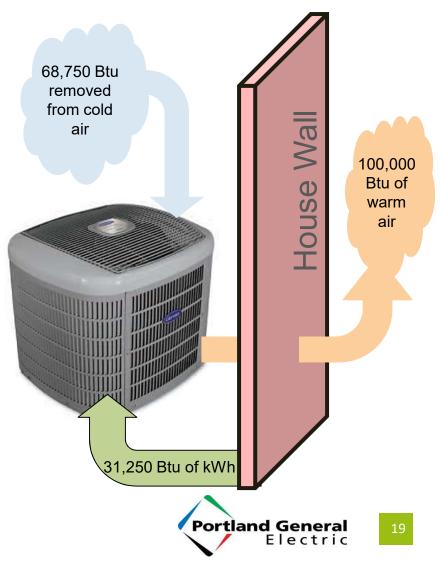
The Customer Install with CTA-2045 Socket

Example: Water Heaters in NW

- Beyond simple demand response; tanks provide ~4 kWh of thermal storage, 0 to 0.6 kW of flex load, everyday, to aid renewable integration.
- Times 3.4 million water heaters implies
 - 14,000 MWh of energy shifting ability
 - 1,700 MW of flexible load/capacity
 - Instead of running peaker to firm renewables, using water heaters instead would save 2.4 million tons of CO2/year by avoiding use of 45 trillion Btu of natural gas.
- Economics work with heat pump water heaters too.


Other Early Targets for Alonetic Devices

Electric Device	Egonetic Design	Alonetic Design
PV System	Customer with Net Metering	Customer's Smart PV Inverter provides voltage support
Whole House Battery Backup	Expensive asset used 0.02% of time	Battery serves: customer in outage, utility to reduce peak
Water Pumping	Tanks maintained between low/high set points	Variable speed pumps vary output
Com' HVAC: Fans/Chillers	Temp maintained between low/high set points	Variable speed compressors/ fans vary output renewable output
PEVs	Charge after evening commute	Chargerate 🗙 renewable output
Heat Pumps	Temp maintained between low/high set points	Variable speed compressors vary output C renewable output
Commercial Refrigeration	Temp maintained between low/high set points	Pre-cooling before peak causes reduced load during peak


Implementing Solution #2

Heat pumps & thermal storage for space conditioning & water heating (a 2 for 1 solution)

Heat Pump Opportunity, Today, Save Natural Gas, Reduce CO₂

- Today's variable speed heat pumps have efficiencies ≥ 320%.
- In 2040 WECC with 0.37 lb. CO₂/kWh (gen. mix increased for T&D loss), a therm of heat takes 9.2 kWh → 3.4 lb. CO₂
- Compare to: therm of heat from 95% gas furnace → 12.2 lb. CO₂
- Add thermal storage in walls, tanks or other methods → 80% of energy use can be synched to times of renewable generation
- Heat Pump Water Heaters similar savings and storage ability

Example of Thermal Storage in Home

- Thermal mass of house: (allowing +/- 1 to 3 deg F in house temperature setting) For heating (cooling)
 - pre heat (cool) before peak event;
 - lower (raise) temperature during peak;
 - Add heat (cool) any time excess renewables exist
 - Use slightly more energy but bill lower with right price structure
- Add storage tank that supplies HVAC and Hot water

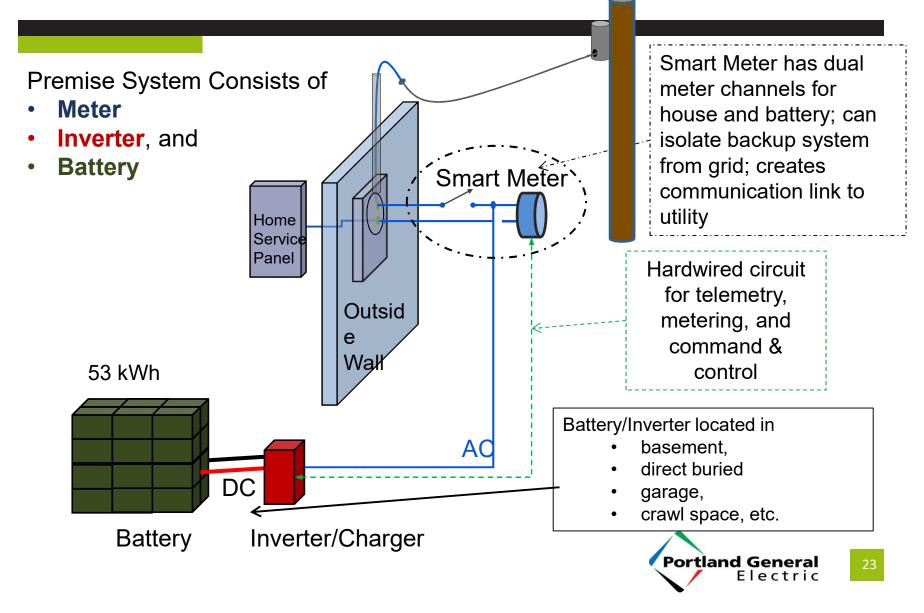
Photo Credit: Sanden USA

Implementing Solution #3

Electric storage

(esp. stationary at each customer premises)

Photo Credit: Aquion Energy http://www.aquionenergy.com/products/stat ionary-energy-storage-batteries



"Killer App" Home, Battery-Powered Backup

- Concept: Battery-inverter system backs up home 0.02% of time, but 99.98% of time, utility uses battery, per agreement, to integrate renewable generation
- If 25% of homes have an 8 kW, 30 kWh system, US would have a 220 GW resource to [compare to installed generation base of 1,000 GW]
 - absorb excess renewable energy
 - serve system peak demand
 - Provide local voltage control
- Enablers to this scale:
 - Battery at \$150/ kWh
 - Standardize methods to control the battery

A Utility-Owned Version of the Killer App

Best Storage Location versus Flex Resource Gen Plant Flex Resource CT + Value by Use Case

Application

Capacity/Energy for Peak Demand	
Frequency Regulation	
Renewable In-Hour Load Following	
Correct Hr-Ahead renewable forecast error	
Store Excess Night Wind Energy	Х
Emergency Baseload Energy Resource	
Feeder Voltage Control	Х
Customer subsidy for outage back-up value	Х
Reduce transmission cost to market	Х
Credit for Reduced T&D Losses	Х

 $\left(- \right)$ Х Х Х

Home Battery Back-up

Large Battery co-locate Utility Renewable

Not only best location, but also most economical system solution

Res'l Hot Water Storage

Reasonable economics now, or after price drop

Х

X

Price drop and or major development required before viable

Best economics now, or after price drop

© PGE 2016

Low benefit

Х

Х

Х

Χ

Χ

Х

Х

Х

X No benefit possible

Implementing Solutions #4 & 5

#4: Increased industrial manufacturing capacity that runs coincident with renewable production

#5: Synthetic oil and methane production from waste cellulose and 100% renewable electricity or bio-engineered "bugs"

We need a plan, based on changing economics, of how to <u>use</u> over-generation!

Photo Credit: Didier Descouens http://commons.wikimedia.org/wiki/File:Morpho didius Male Dos MHNT.jpg

Thanks for your Interest

Questions?

- Conrad Eustis
- Director Retail Technology Strategy
- Portland General Electric
- Conrad.eustis@pgn.com
- <u>c.eustis@gmail.com</u>

WECC Renewable Portfolio Standards Overview

- 1. California 50% by 2030
- 2. Oregon 50% by 2040
- 3. Montana 80% by 2050

Laws about ten years old:

- 4. Washington 15% by 2020
- 5. Nevada 25% by 2025
- 6. Utah 20% by 2025
- 7. Colorado 30% by 2030
- 8. Arizona 15% by 2025
- 9. New Mexico 20% by 2020
- 10. & 11. Idaho and Wyoming no standard

http://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx

not including 20% from existing Hydro not including 25% from existing Hydro if ballot measure (8 Nov 2016); otherwise 15%

Requirements apply to IOUs, Publics often have reduced targets

Existing RPS standards increase renewables in WECC from 28% (mostly hydro) to 60%

A Problem and an Opportunity

Problem:

- Excess wind generation in off-peak
- Excess solar occurs mid-day

Technology Opportunity:

- Load devices that consume energy in periods of lowest energy price (coincident with over-generation periods)
- New loads that run in periods of over generation

